Молния и гроза

Ах, гроза-егоза, молний рыжие глаза

Стихи про грозу для детей

Радуга

В небе гром, гроза.
Закрывай глаза!

Дождь прошел. Трава блестит,
В небе радуга стоит.

Поскорей, поскорей
Выбегай из дверей,
По траве
Босиком,
Прямо в небо
Прыжком.

Ладушки, ладушки!
По радуге, по радужке,
По цветной
Дуге
На одной
Ноге.
Вниз по радуге верхом
И на землю кувырком!
Самуил Маршак

Гром гремит на всю округу…

Гром гремит на всю округу.
Грому рады — ровно другу.
С треском, с грохотом гремит
Так, что всё вокруг дрожит…
Ну и треск! Вот это гром!
Ох, гроза! Пожар кругом:
Так сверкнёт вокруг вдруг ярко.
От грозы на небе жарко!
Гром народ благодарил:
Гром прохладу подарил.
Роман Сеф

***

Погулять гроза решила,
Гром с цепи она спустила.
Гром гремит, гремит, гремит.
Стрелка молнии блестит.
Дождь летит вниз головой
И стучит по мостовой.
А за тучей, а за тучей
Прячет солнце жёлтый лучик.
Гонят прочь грозу все дети.
Пусть ромашкой солнце светит.
Керстен Т.

***

Ах, гроза-егоза,
Молний рыжие глаза,
Дождь небрит и колюч
Бородой торчит из туч.
Бом! — по крышам – Тили-бом! —
Босиком гуляет гром.
А кошачьи чердаки
Продувают сквозняки.
А в собачьей конуре
Под окошком во дворе
Ненамного веселей –
Ветер дует из щелей.
Лишь на кухне за столом
И уютно, и тепло.
Дома нам не страшен гром.
Хорошо иметь свой дом!
Царев И.

Начинается гроза

Начинается гроза,
Потемнело в полдень,
Полетел песок в глаза,
В небе — вспышки молний.

Ветер треплет цветники
На зеленом сквере,
В дом ворвались сквозняки,
Распахнулись двери.

Сестры в комнату скорей —
Мамы нету дома.
Может маленький Андрей
Испугаться грома!
Вспыхнул на небе пожар,
Сосны зашумели,
Сестры, словно сторожа,
Встали у постели.

Но вполне спокоен брат —
Не заметил молний,
Ручки вытащил и рад
И лежит, довольный.
Агния Барто

***

Загремел на небе гром,
Сотрясается весь дом,
Ведь на улице гроза.
Я зажмурила глаза.
Молнии сверкают ярко,
Утром было очень жарко.
Не могу совсем я спать,
Лучше спрячусь под кровать.
Нет, совсем я не трусиха!
Просто посижу там тихо.
Губская Н.

***

В небе что-то грохотало,
Капля на нос мне упала.
Папа сразу мне сказал:
«Начинается гроза!»
Я надела новый плащ.
Ну давай же, тучка, плачь!
Поливай меня дождём!
Мне всё будет нипочём.
Александрова М.

***

Там, где небо в край земли
Синью зацепилось,
Грозной важности полна,
Туча появилась.
Осмотрелась неспеша…
Заворчала: «Жарко,
Значит я не зря пришла,
Мне дождя не жалко.»
И как грянула грозой
Землю освежая.
Крутят клёны головой
Пыль с листвы смывая.
По дороге, по полям,
Скачет дождь весёлый…
Вымыл шеи тополям,
Вымыл бор сосновый.
Вымыл парк и школьный двор,
Воробьёв на ветке,
Покосившийся забор,
И… белье соседке.
Дождь звенел, играл, хлестал
Звонко и колюче
И внезапно перестал…
Вылилась вся туча.
Кандараков А. Послушайте стихотворение «Гроза идёт» Елены Сокур

Послушайте стихотворение «Гроза идёт» Елены Сокур.

Приглашаем вас почитать:Музыка Дождя… Она прекрасна! Стихи про дождьЗагадки про дождьЗагадки про ветер

Осторожно, молния!

Молния — это довольно опасное природное явление, и лучше от нее держаться подальше. Находясь в помещении во время грозы, нужно избегать воды. Это отличный проводник электричества, поэтому не стоит принимать душ, мыть руки, посуду или стирать. Не стоит пользоваться телефоном, так как молния может ударить по внешним телефонным линиям. Не включать электрическое оборудование, компьютеры и бытовую технику во время шторма

Зная, что такое гром и молния, важно правильно вести себя, если вдруг гроза застала врасплох. Стоит держаться подальше от окон и дверей

Если кого-то ударила молния, нужно позвать на помощь и вызвать скорую.

Шаровая молния

Шаровая молния — едва ли не самое загадочное природное явление на нашей планете.

И хотя, по статистике, с шаровой молнией встречается только каждый 10-тысячный житель Земли, никто до сих пор толком не знает, что же она из себя представляет — как образуется, из чего состоит, по каким законам «живет». Ученые теряются в догадках, ведь воспроизвести шаровую молнию в лабораторных условиях до сих пор не удавалось, а значит, и изучать ее приходится лишь со слов очевидцев, которые порой рассказывают такие фантастические вещи, в которые и поверить-то трудно…

Шаровая молния — одно из наиболее таинственных явлений на планете

В архивах есть свидетельства, к примеру, того, что шаровая молния сжигала на человеке нижнее белье, оставляя целой верхнюю одежду, двигалась против ураганного ветра, сплавляла монеты в кошельке в общий слиток, оставляя кошелек невредимым, «воровала» с пальцев кольца.

В других случаях она тянула за собой людей, поднимая их в воздух, оставляла после взрыва на теле пострадавших изображения близлежащих предметов: листьев, насекомых, деревьев, гор и даже собственного лица жертвы. Что тут правда, а что вымыслы — сказать трудно.

Вот еще один поразительный случай, который, без сомнения, вызовет в научных кругах скептические отзывы. На Медведицкой гряде (граница Волгоградской и Саратовской областей России) 11 ноября 1990 г. шаровая молния в мгновение ока испепелила сидевшего на камне пастуха Бисена Мамаева, превратив его в черную мумию, но оставив невредимой одежду.

Шаровая молния на железнодорожном переезде

Любопытно, что шаровые молнии не всегда ведут себя так разрушительно. Иногда они абсолютно безобидны и не причиняют людям никакого вреда, даже коснувшись их тела. А в дом или салон летящего самолета могут пробраться, ничего вокруг не повредив, — прямо сквозь стекло или обшивку.

Вот одно из подобных свидетельств.

«В тот июльский вечер 1956 г. была жуткая гроза. После удара молнии где-то поблизости раздался сильный треск и из заслонки вытяжной трубы прямо над моей головой выплыл и «присел» на подушку огненно-красный шарик диаметром 20-25 см. Он переместился с подушки на шерстяное одеяло, под которым я замер, затаив дыхание, и повис над кроватью. Тепла я не чувствовал. Мать, увидев его, бросилась «тушить», молотя по нему голыми руками. Шар от первого же удара рассыпался на несколько мелких шариков, которые она тут же разбила руками. Никаких ожогов у нее не было, правда, где-то неделю пальцы не слушались. А вот на одеяле мы обнаружили выгоревшее пятно 5-7 см диаметром» (М. Я. Базаров, г. Курск).

Этим людям удивительно повезло! При встрече с шаровой молнией ни в коем случае нельзя к ней прикасаться. В безобидном светящемся шарике может таиться огромная разрушительная сила.

Как появляется молния?

Молния возникает в сильно наэлектризованных дождевой туче, между облаком и землей либо между соседними облаками. Причиной электризации выступает сила притяжения, которая возникает вследствие трения сконденсированных капелек или льдинок, из которых и образуется грозовая туча. Эти частички находятся в непрекращающемся движении вызванным потоками теплого воздуха, поднимающимися вверх от нагретой поверхности земли. Льдинки и капельки воды сталкиваются друг с другом, в результате чего и происходит электризация тучи. При этом более мелкие частички, увлекаемые воздухом вверх, имеют положительный заряд, а более крупные и тяжелые, находящиеся в нижней части облака – отрицательный.

Когда два противоположно заряженных облака приближаются друг к другу между ними возникает плазменный канал, образующийся из ионов и электронов. По этому каналу устремляются заряженные частицы в результате чего получается электрический молниевый разряд. Как между разными облаками получается молния, так и между тучей и поверхностью земли или же внутри одной грозовой тучи.

Сегодня ученые нашли ответ из чего же состоит молния – из нитей электрических зарядов (стримеров), которые сливаясь образуют ступенчатый лидер. По мере приближения лидера к поверхности земли или другому облаку, образуется ответный и при их соприкосновении происходит яркая вспышки и электрический разряд.

Шаровая молния

Шаровая молния – отдельный вид молнии, природа которого остается загадкой. Такая молния представляет собой движущийся в воздухе светящийся объект в форме шара. По немногочисленным свидетельствам шаровая молния может двигаться по непредсказуемой траектории, разделяться на более мелкие молнии, может взорваться, а может просто неожиданно исчезнуть. Существует множество гипотез о происхождении шаровой молнии, но ни одна не может быть признана достоверной. Факт — никто не знает, как появляется шаровая молния. Часть гипотез сводят наблюдение этого явления к галлюцинациям. Шаровую молнию ни разу не удалось наблюдать в лабораторных условиях. Все, чем могут довольствоваться ученые – это свидетельства очевидцев.

Напоследок предлагаем Вам посмотреть видео и напоминаем: если курсовая или контрольная свалилась на голову как молния в солнечный день, не нужно отчаиваться. Специалиста студенческого сервиса выручают студентов с 2000 года. Обращайтесь за квалифицированной помощью в любое время. 24 часа в сутки, 7 дней в неделю мы готовы помочь вам.

https://youtube.com/watch?v=L98wSXjdg4g

Оборудование для защиты

В первую очередь в защите нуждаются самолеты. Корпус каждого из них покрыт специальной экранирующей металлической сеткой, она проводит электричество, но не позволяет ему попасть внутрь, навредить оборудованию и людям. Есть и дополнительная защита, она установлена на каждом приборе и является гарантией того, что он не выйдет из строя. При попадании пассажиры на борту могут услышать громкий звук, но иногда его не слышно. Перед тем, как сдать самолет в использование, его всячески испытывают, один из тестов — симуляция разных видов молнии.

На домах и оборудовании устанавливают грозозащиту. Она не может уберечь от удара, ее назначение — в сохранении оборудования от статического электричества и напряжения. Когда появляется разница в напряжении, срабатывает защитный диод, благодаря этому провода заземляются.

Люди научились противостоять молниям, но так и не могут объяснить во всех деталях природу их появления. Но наука сделала большой прорыв. Знание основывалось на наблюдениях. Еще в древности, когда люди относили молнию к божьей каре, они подметили, что бьет она преимущественно в высокие объекты. О связи с электричеством стало известно только в 17 веке. На тот момент наиболее достоверную гипотезу выдвинул Б.Франклин. Его научный труд датирован 1750 годом, в нем описывается эксперимент, в ходе которого в грозу запускали воздушного змея с металлическим стержнем. Именно так была доказана электрическая природа. В 20 веке ученые уже знали, почему появляется молния, а также открыли их необычные разновидности. Сейчас изучение проводится через спутники.

Какие бывают молнии?

Прежде, чем подробно рассказать о типах молний, надо сказать, какими они вообще бывают. Четыре основных типа были приведены парой строк выше, а именно: линейная, зигзагообразная, шаровая и сухая.

Линейной молнией называют короткий резкий разряд, который вспыхивает моментально, озаряет собой небо и пропадет. Иногда даже самой молнии не видно, так как она проходит очень быстро и часто даже бьет не в землю, а между облаками.

Зигзагообразной принято называть чуть более долгие молнии, которые имеют кривую траекторию и дают хоть несколько долей секунды, чтобы себя рассмотреть. Иногда можно заметить даже небольшую пульсацию света в них.

Шаровая молния — это крайне редкое явление. Если с обычной молнией мы встречаемся по несколько раз в год, а жители некоторых регионов — несколько раз в неделю, то шанс увидеть шаровую молнию не превышает один к десяти тысячам. Именно поэтому явление считают очень мистический, и если вы ее видели, вам очень повезло. Надо бежать за лотерейным билетом.

С сухой молнией все просто. Так обычно называют молнию, которая происходит без дождя. Не самое часто явление, но периодически все равно случается. И уж точно чаще, чем шаровая.

Как возникает молния?

Внутри тучи

Грозовую тучу не спутаешь с обычным облаком. Ее мрачный, свинцовый цвет объясняется большой толщиной: нижний край такой тучи висит на расстоянии не более километра над землей, верхний же может достигать высоты 6-7 километров.

Что происходит внутри этой тучи? Водяной пар, из которого состоят облака, замерзает и существует в виде ледяных кристаллов. Восходящие потоки воздуха, идущие от нагретой земли, увлекают мелкие льдинки вверх, заставляя их все время сталкиваться с крупными, оседающими вниз.

В процессе столкновений льдинки электризуются, точно так же, как это происходит при трении различных предметов один о другой, — например, расчески о волосы.

Причем, мелкие льдинки приобретают заряд положительный, а крупные — отрицательный. По этой причине верхняя часть молниеобразующего облака приобретает положительный заряд, а нижняя — отрицательный. Возникает разность потенциалов в сотни тысяч вольт на каждом метре расстояния — как между облаком и землей, так и между частями облака.

Развитие молнии

Развитие молнии начинается с того, что в некотором месте облака возникает очаг с повышенной концентрацией ионов — молекул воды и, составляющих воздух, газов, от которых отняли или к которым добавили электроны.

По одним гипотезам, такой очаг ионизации получается из-за разгона в электрическом поле свободных электронов, всегда имеющихся в воздухе в небольших количествах, и соударением их с нейтральными молекулами, которые сразу же ионизируются.

Ионизированный газ служит неплохим проводником электричества, поэтому через ионизированные области начинает течь ток. Дальше — больше: проходящий ток нагревает область ионизации, вызывая всё новые высокоэнергетичные частицы, которые ионизируют близлежащие области, — канал молнии очень быстро распространяется.

Вслед за лидером

На практике процесс развития молнии происходит в несколько стадий. Сначала передний край проводящего канала, называемый «лидером», продвигается скачками по нескольку десятков метров, каждый раз, немного меняя направление (от этого молния получается извилистой). Причем скорость продвижения «лидера» может, в отдельные моменты, достигать 50 тысяч километров за одну-единственную секунду.

После того, как ионизированный канал, толщина которого может достигать нескольких сантиметров, оказывается «пробит», по нему с огромной скоростью — до 100 тысяч километров всего за одну секунду — устремляются заряженные частицы, это и есть сама молния.

Ток в канале составляет сотни и тысячи ампер, а температура внутри канала, при этом, достигает 25 тысяч градусов — потому молния и дает столь яркую вспышку, видимую за десятки километров. А мгновенные перепады температур, в тысячи градусов, создают сильнейшие перепады давления воздуха, распространяющиеся в виде звуковой волны — грома. Этот этап длится очень недолго — тысячные доли секунды, но энергия, которая при этом выделяется, огромна.

Конечная стадия

На конечной стадии скорость и интенсивность движения зарядов в канале снижается, но, все равно, остаются достаточно большими. Именно этот момент наиболее опасен: конечная стадия может длиться только десятые (и даже меньше) доли секунды. Такое, достаточно длительное, воздействие на предметы на земле (например, на сухие деревья) часто приводит к пожарам и разрушениям.

Причем, как правило, одним разрядом дело не ограничивается — по проторенному пути могут двинуться новые «лидеры», вызывая в том же самом месте повторные разряды, по количеству доходящих до нескольких десятков.

Порождение грома и молнии

Грозовые облака порождают блискавицы. А молнии, в свою очередь, небесный грохот. Как это происходит? Почему гремит гром?

1. Капельки и льдинки в верхней части грозовой тучи взаимодействуют с молекулами воздуха и заряжаются электричеством. Когда они тяжелеют, то падают вниз. Так нижняя часть облака заряжается отрицательно.

2. В это же время положительный заряд накапливается вверху тучи. А плюс и минус притягиваются.

3. Под влиянием притяжения положительного и отрицательного возникает напряжение. С учетом размеров облака (до десяти километров в ширину) это напряжение достигает сотен миллионов вольт. Так рождается молния.

4. Появившаяся из тучи искра следует к земле. Ее температура огромна – более двадцати градусов. В результате стремительного движения огненной стрелы в атмосфере создается большое давление. А сразу за ней воздух резко сжимается, возвращаясь в свое первоначальное состояние. Получается взрывоподобный звук. Так рождается гром.

Частые вопросы:

Почему мы сначала видим молнию, а потом слышим звук грома?

Потому что скорость света в сотни миллионов раз больше скорости звука.

Почему мы слышим раскаты грома?

Потому что волны звука встречают на своем пути различные препятствия (облака, земля) и отражаются от них. Происходит это многократно. Отсюда и раскатистые громовые звуки.

Иногда мы видим блискавицу, но не слышим раскатов. Почему?

Гроза находится слишком далеко от нас, более двадцати километров.

Я очень люблю осень. Это время года, когда отступает летняя невыносимая жара, а пейзажи приобретают самые волшебные краски. Обожаю, когда в окно стучат капли дождя, а я с чаем и под теплым пледом смотрю интересный фильм. Но иногда эту идиллию нарушают громкий грохот грома и яркие сверкания молнии. Эти явления способны нагнать страх и ужас.

Как образуется молния?

Льдинки сталкиваются и происходит то же самое, что и при трении других предметов друг о друга — они электризуются. Крупные обретают отрицательный заряд, мелкие — положительный. Разные части тучи получают разный заряд, сверху — плюс, снизу — минус. Разница потенциалов создается не только между частями тучи, но и между ней и землей. Разница исчисляется сотнями тысяч вольт. Молния двигается быстро, но образуется она не молниеносно. Формирование — это три последовательные стадии.

Начальная

Разряд создается в той части, где больше ионов, частиц с зарядом. Ионы появляются, когда целая молекула теряет электроны или обрастает новыми. В данном случае эти частицы создаются из газов и воды, из них туча и состоит. По поводу того, что происходит дальше, у специалистов нет единого мнения.

Ряд ученых считают, что из-за разгона свободных электронов концентрация ионов становится выше. Электроны сталкиваются с молекулами нейтрального заряда, ионизируя их. Так создается заряд. Есть и другая гипотеза, согласно которой воздух ионизируется под воздействием космического излучения. В ионизированном состоянии газы проводят ток, поэтому по облаку может пройти электричество.

Средняя

Затем следует цепная реакция. По облаку проходит ток, и он нагревает воздух в его определенной части. От этого энергетически заряженных частиц становится все больше, и они создают еще больше ионов. По этой причине молния проходит очень быстро. У любой молнии есть самый мощный канал, от него отходят ответвления. Поэтому заряды похожи на зигзаг, с новой вспышкой заряд продвигается примерно на несколько десятков метров. Скорость этого мощного канала может доходить до 50 тысяч километров в секунду.

Самый мощный заряд доходит до другой части облака или до земли, но на этом все не заканчивается. Ионизированный канал пробивается электрическим разрядом, по этому каналу очень быстро проходят заряженные частицы, его ширина составляет несколько сантиметров, температура внутри достигает нескольких тысяч градусов. Эти идущие по каналу заряды — и есть молния, которую мы видим. Из-за высокой температуры мы видим молнию очень яркой, явление проходит молниеносно, но за эти мгновения успевает высвободиться очень много энергии.

Финальная

Скорость движения зарядов в канале падает, но при этом напряжение и сила тока по-прежнему высоки. На финальной стадии молния достигает какого-то объекта. Если рядом будут люди, то для них явление крайне опасно. Данная стадия длится десятые доли секунды, но она способна нанести огромный ущерб. Вопреки распространенной поговорке, молния часто бьет в одно место дважды или даже несколько раз, так как оно является завершающего точкой для самого короткого пути.

Откуда берутся молнии перед землетрясением?

Существуют молнии, которые проявляют себя во время землетрясений. До конца их природа пока неизвестна, но они тоже возникают из-за накопления заряда. Только в данном случае это происходит из-за трения слоев пород между собой.

Изначально ученые не воспринимали всерьез рассказы о том, что землетрясения сопровождаются молниями, но появление в последнее время камер заставило их задуматься над этим. В итоге они начали ставить эксперименты и пришли к выводу о трении слоев пород.

Куда более известны молнии при извержениях вулканов, которые еще называются “грязными молниями”. Они тоже возникают в результате трения между собой частиц, вылетающих из жерла.

Примерно так выглядит молния внутри вулкана.

Образование молний сопровождает и другие явления, например, пылевые бури, торнадо и некоторые другие, приводящие все к тому же накоплению заряда.

Что такое гром

Гром — это звук молнии. Грохот, называемый громом, — это звук вибраций, создаваемых молнией. При возникновении заряда, частицы вибрируют при движении. Поскольку это большой разряд энергии, она вызывает огромные колебания.

Молнии очень горячие. Мгновенное нагревание заставляет частицы воздуха расширяться, что создает большую силу. Вибрации передаются в наши уши в виде звуковых волн. В результате мы слышим грохот.

Если подойти достаточно близко, слышится треск или звук хлыста. Если приблизиться, слышим четче. Звуковые волны вибраций освещения не искажаются из-за отражения от окружающих предметов.

Что такое молния?

Молния – это электрический разряд. Но откуда же он берется? А все начинается с облаков. С поверхности земли испаряется влага, которая поднимается вверх в виде капелек. “Стая” таких капелек собирается на определенной высоте и становится видна с земли в виде облака (в одном облаке просто невероятное количество капель). К облакам постоянно присоединяются новые капли, а старые могут отрываться от них. Если их присоединяется больше, чем отрывается, то облако растет. Размер облака по вертикали может достигать нескольких километров (расстояние от земли до нижней части облака примерно 0.5 – 2 км). В облаках температура может быть ниже нуля градусов по Цельсию, поэтому капельки замерзают и становятся льдинками. Эти льдинки находятся в постоянном движении, поэтому очень часто сталкиваются друг с другом. В результате этих столкновений одни капли/льдинки заряжаются положительно (они более легкие, поэтому поднимаются вверх), а другие отрицательно (они более тяжелые, поэтому скапливаются в нижней части облака).

При этом процессе нижняя часть облака заряжается отрицательно, а верхняя – положительно. При этом такое облако уже имеет большие размеры и становится грозовым. Нужно понимать, что не каждое облако становиться грозовым, так как этот процесс занимает длительное время, и нужно, чтобы сложились благоприятные условия (чтобы облако не распалось раньше, чем оно накопит достаточный заряд и наберет достаточную массу).

Теперь вернемся к молнии. Если два таких грозовых облака подходят на достаточно близкое расстояние (да еще одно подходит отрицательной стороной, а другое – положительной), заряженные частицы (электроны и ионы) начинают проскакивать через воздушную прослойку между двумя облаками (ведь плюс и минус, как мы знаем, должны притягиваться). Даже воздушная прослойка не может их остановить, настолько большие заряды у облаков!

Обычно первые частицы являются “полководцами”, так как они прокладывают канал между облаками, по которому сразу же устремляются миллиарды других заряженных частиц.

В этот момент мы и видим молнию!

Часто случается такое, что молния бьет прямо в землю. В этом случае сама земля выступает в качестве скопления положительного заряда, а остальное происходит как описано выше.

Как формируются грозовые облака?

В атмосферном воздухе есть вода. В виде пара. Под воздействием высокой температуры воздуха с водной поверхности земли поднимается теплый пар. Снизу его подгоняет теплый воздух.

В верхних слоях атмосферы температура более низкая. Чем выше водяной пар поднимается, тем холоднее вокруг него становится. Соответственно, он остывает.

В атмосфере есть не только газы и вода. Присутствует также пыль. Вокруг ее мельчайших частичек и конденсируется остывший пар. Маленькие водяные капельки и льдинки превращаются в облака. Они бывают разными. В виде перьев или огромных куч, белых полосок на небесном склоне или рваных тряпиц.

Грозовые тучи образуются вследствие столкновения масс воздуха. Тогда в верхней части собирается много-много водяных кристалликов. Получается некое подобие белой плотной пелены. Она подсвечивает холодом все облако, которое приобретает насыщенный оттенок свинца. Потому мы и называем такие тучи «свинцовыми», «тяжелыми».

Интересные факты о молниях в небе

  1. Самая длинная молния на Земле зафиксирована в 2007 году в Оклахоме, США. Ее длина составила 321 км.
  2. Самая долгая молния — наблюдалась в течение 7,74 секунды — зафиксирована в Альпах.
  3. Похожие природные явления образуются и на других планетах. Ученым удалось зафиксировать вспышки на Венере, Уране, Сатурне, Юпитере и выяснить, что на Сатурне они гораздо мощнее, чем на Земле.
  4. Значения характеристик тока в молнии очень высоки: сила тока порой достигает сотен тысяч Ампер, напряжение равно миллиарду Вольт.
  5. Температура канала молнии достигает рекордных 30000 градусов Цельсия, что почти в 5-6 раз больше температуры на Солнце, а ширина канала, по которому проходит ток, — всего 1 сантиметр в диаметре.
  6. Скорость молнии составляет в среднем около 56000 км в секунду, при том что гроза движется со скоростью около 40 км/час. Средняя длина электрического разряда равна 9,5 километрам.
  7. Обычная вспышка длится 0,2-0,3 секунды и состоит из 3-4 электрических разрядов.
  8. В Венесуэле, в устье реки Кататумбо, круглый год ночью можно наблюдать множество молний, которые возникают без перерыв в течение длительного времени. Пик необычного явления приходится на май и октябрь.
  9. При попадании электрического разряда в песок или горную породу образуются фульгуриты. Фульгуриты представляют собой стеклянные, полые внутри трубочки разнообразных форм и размеров.
  10. Молния попадает в самолеты один раз за 5-10 тысяч летных часов.
  11. Вероятность увидеть шаровой сгусток плазмы — 1 к 10 000.
  12. Вероятность умереть от удара молнии довольно низкая: 1 к 2000000.
  13. При попадании электрического разряда непосредственно в землю или человека оставляет витиеватые следы, которые внешне напоминают молнию по форме.
  14. Молния всегда ищет самый короткий путь для удара между землей и небом. Поэтому чаще всего бьет в высокие объекты, возвышающиеся над поверхностью земли. Именно по этой причине во время грозы очень опасно находиться на равнине или на поверхности воды, так как человек в этом случае превращается в самый высокий объект.
  15. Громоотводы были придуманы в качестве ловушки для молний, но стопроцентной гарантии они не дают. По наблюдениям ученых 3 заряда из 10 приходят мимо.

Как развивается молния

Когда бушует гроза, молния, гром сопровождают ее беспрестанно. Чаще всего искра происходит из отрицательно заряженной тучи. Она развивается постепенно.

Сначала из тучи по каналу, направленному к земле, течет небольшой поток электронов. В этом месте тучи скапливаются электроны, двигающиеся с большой скоростью. Благодаря этому электроны сталкиваются с атомами воздуха и разбивают их. Получаются отдельные ядра, а также электроны. Последние также устремляются к земле. Пока они движутся по каналу, все первичные и вторичные электроны снова расщепляют стоящие у них на пути атомы воздуха на ядра и электроны.

Весь процесс похож на лавину. Он двигается по нарастающей. Воздух разогревается, его проводимость увеличивается.

Все сильнее электричество из тучи стекается к земле со скоростью 100 км/с. В этот момент молния пробивает себе канал к земле. По этой дороге, проложенной лидером, электричество начинает течь еще быстрее. Происходит разряд, имеющий огромную силу. Достигая своего пика, разряд уменьшается. Канал, разогретый таким мощным током, светится. И в небе становится видно молнию. Протекает такой разряд недолго.

После первого разряда часто следует второй по проложенному каналу.

Что такое шаровая молния

Чаще всего молния представляет собой прямую или зигзагообразную линию. Но иногда наблюдается шаровая молния. Она представляет собой светящийся клубок, пролетающий над поверхностью земли и разрывающийся при контакте с твердым предметом. Это явление является малоизученным. Многие даже не верят в существование шаровой молнии. Однако, удивительные истории, описанные в различных историях, доказывают обратное.

Для того, чтобы изучить механизм, ее нужно снять на фото или видео. Но так как явление это крайне редкое, то никому не удается поймать момент. Ученым приходится довольствоваться рассказами очевидцев. В отличие от обычной молнии, вспышка от которой длится доли секунды, шаровая может находиться в воздухе от нескольких секунд до минуты.

Почему сначала молния, потом гром

Наблюдателю, видящему множество разрядов на грозовом небе, бывает сложно понять, что идет сначала – молния или гром. Вначале наблюдатель видит молнию, затем слышит раскат. Обусловлено это тем, что световая волна движется быстрее, чем звуковая. Утверждения, что бывает раньше гром, ложные. Просто очевидцы слышат раскат от предыдущей молнии, а затем сразу видят следующую.

Бывает, что разряды сверкают, а грома нет. Это физическое явление называется «тихая гроза». Она отмечается, когда молнии бьют выше 20 км над землей. Звуковая волна просто не достигает земной поверхности.

Есть и обратное явление – «холостая гроза». Раскаты слышны, но молний не видно. Существование грома без молнии невозможно, просто в данном случае разряды не видны наблюдателю.

История изучения

Наблюдать молнию люди могли еще с древних времен, но длительное время этому явлению не было объяснения. Изначально считалось, что вспышки в небе – результат деятельности богов. Еще древнегреческие философы подметили, что молния поражает высокие объекты.

Значимый вклад в изучение молнии сделали мореплаватели. В открытом море электрические разряды оказались еще мощнее. Связь между молнией и электричеством была выдвинута в 17-18 веках, в период развития физики.


Молния в море

Наиболее подробно такую гипотезу описал в своих исследованиях Бенджамин Франклин. В 1750 он представил научный труд, в котором был описан известный нынче эксперимент по определению электрической природы молнии.

Суть опыта состояла в запуске воздушного змея во время грозы. При этом к змею крепился стержень из меди, а к тросу – металлический ключ. Цель эксперимента – доказать электрическую природу молнии.


Опыт Бенджамина Франклина, иллюстрация

Для подтверждения гипотезы молния должна ударить в змея, пройти по тросу и оставить след на ключе. Опыт Франклин провел в июне, позаботившись о громоотводе. Стоит сказать, что он прошел успешно и подтвердил все догадки физика.

В 20-м веке ученые открыли необычные виды молнии (спрайты, джеты, эльфы), которые возникают в верхних слоях атмосферы. В настоящее время исследования молнии проводятся при помощи спутников.

Молнии в верхних слоях атмосферы

Высота образования традиционных молний не превышает 16 км. Но молнии «живут» и выше в атмосфере. Обнаруженные в 1989 г. на высоте около 100 км конусообразные вспышки с диаметром основания до 400 км ученые назвали эльфами. А спустя шесть лет, в 1995 г., был зафиксирован и описан еще один вид молний — джеты. Эта более «живучая» разновидность молний представляет собой синие трубчатые конусы высотой около 50 км.

Существуют также молнии, бьющие из грозового облака вверх. Они являются спутниками практически любой грозы, но «хозяйничают» на высоте от 50 до 130 км, поэтому с земли видны слабо. Такие молнии, открытые около 20 лет назад, исследователи назвали спрайтами.

Спрайты, джеты и эльфы — настоящая загадка для ученых. О них почти ничего не известно, поскольку исследовать их практически невозможно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector