Законы кеплера
Содержание:
- Планеты Солнечной системы. Стабильность системы
- Держим курс: равномерное вращательное движение
- Определение карликовых планет
- Третий закон Кеплера
- Ретроградное движение за пределами Солнечной Системы
- Колебания сезонного характера
- Фактор, отвечающий за смену времен года
- Изучение Солнечной системы
- Галактические орбиты звезд
- Движение тел в космосе
- Законы движения планет
- Астрофизические параметры Млечного Пути
- Эллиптическая орбита Земли
- Претенденты на звание карликовых планет
- Естествознание
- § 54. Видимое движение планет
Планеты Солнечной системы. Стабильность системы
Обращение планет вокруг Солнца происходит в одном (прямом) направлении. Орбиты планет практически круговые, а их плоскости близки к плоскости Лапласа. Это основная плоскость Солнечной системы. Законам механики подчиняется наша жизнь, и Солнечная система не исключение. Планеты связаны друг с другом законом всемирного тяготения. Исходя из отсутствия трения в межзвёздном пространстве, можно уверенно предположить, что движение планет относительно друг друга не изменится. Во всяком случае, в ближайшие миллионолетия. Многие учёные пытались рассчитать будущее планет нашей системы. Но у всех – и даже у Эйнштейна – получалось одно: планеты солнечной системы будут стабильны всегда.
Держим курс: равномерное вращательное движение
Если объект движется с постоянной по величине скоростью по окружности, то такое движение называется равномерным вращательным движением. Примерами такого движения являются движение гоночного автомобиля по круглому треку и стрелки на циферблате часов. На рис. 7.1 показан мяч для игры в гольф, привязанный нитью к шесту и совершающий движение по окружности. Мяч совершает движение с одинаковой по величине скоростью, но с изменяющимся направлением. Потому такое движение мяча называется равномерным вращательным движением.
Время, которое требуется мячику (или какому-либо другому объекту), чтобы полностью обогнуть окружность, называется периодом и обозначается символом \( T \). Период и линейную скорость можно легко связать, если известно пройденное расстояние, т.е. длина окружности \( 2\pi r \), а точнее ее радиус \( r \). Итак, линейная скорость мячика \( v \) равна:
а период вращения \( T \) равен:
Допустим, что длина нити равна 1 м, а период вращения равен 0,5 с. Чему в таком случае будет равна линейная скорость мячика? Подставим численные значения в одно из предыдущих соотношений и получим:
Итак, мячик вращается с линейной скоростью 13 м/с!
Определение карликовых планет
Создавая классификацию тел, вращающихся вокруг Солнца, в 2006 году астрономы разделили все небесные тела на 3 категории:
- планеты;
- карликовые планеты;
- малые тела-астероиды.
Объекты, которые получили название карликовых планет, занимают промежуточную позицию. Их нельзя отнести к телам, которые имеют большие размеры, свою орбиту как, например, Марс или Юпитер. Но и к астероидам их тоже нельзя причислить.
Международный астрономический союз определил, что к карликовым планетам относятся небесные тела в форме сферы, которые вращаются вокруг Солнца. Но при этом у них небольшая масса, нет гравитационного превосходства. На своей орбите они удерживают более мелкие небесные объекты.
Третий закон Кеплера
Третий постулат о движении
небесных тел в Солнечной системе как раз касается понятий перигелия и афелия.
Если провести между ними условную линию, получится большая ось траектории обращения
планеты. Соответственно, половина этого отрезка – большая полуось.
Кеплер на основании
наблюдений вывел, что отношение полных оборотов вокруг центральной звезды для двух
любых планет системы, возведенных в квадрат, всегда равняется отношению больших
полуосей орбитальных путей этих тел, возведенных в куб.
Трудность в
доказательстве и принятии трех законов состояла в том, что он вывел их
эмпирически. Но в конце 17 века Ньютоном был открыта классическая теория
тяготения. Он и помог установить правильность суждений немецкого астронома и
описал движение планет по эллипсу вокруг Солнца. Ньютон установил, что кроме
массы объекта и его удаления от звезды никакие другие свойства не влияют на
гравитационное притяжение.
Также Ньютон внес
корректировки и в третий постулат Кеплера. Он открыл, что для соблюдения
соотношения необходимо учитывать массу космического объекта. Данная трактовка
третьего закона помогает установить массу планеты или спутника, зная величину
его орбиты и период обращения.
Законы Иоганна Кеплера
помогли установить форму планетарной траектории, вычислить период обращения
планет, их скорость и ее изменения по мере приближения и удаления от Солнца. Ученый
вывел Землю из ранга особенных астрономических объектов системы и установил,
что она подчиняется всем трем законом, как и любая другая планета нашей
звездной системы.
Ретроградное движение за пределами Солнечной Системы
В последние десятилетия появилась возможность наблюдать чужие планетные системы у других звезд, а так же их протопланетные диски. К настоящему времени открыто около 4 тысяч внесолнечных планет. Эти открытия показали, что почти у каждой звезды могут существовать хотя бы небольшие планеты на небольшом расстоянии от звезды (внутри земной орбиты).
Измерения лучевых скоростей звезд с известными транзитными планетами позволяют определить угол между экватором звезды и плоскостью орбиты транзитной планеты (т.н. Rossiter–McLaughlin(RM)-эффект). К настоящему времени этот эффект измерен для 134 транзитных планет.
Колебания сезонного характера
Как можно заметить, путь Земли вокруг Солнца называется орбитой
В данном случае стоит уделить внимание такому аспекту, как осевой наклон. Все 4 сезона года возникли исключительно благодаря вращению оси, происходящему под углом, равным 23,4 градуса
Это влечёт за собой такие известные в астрономической науке явления, как равноденствие и солнцестояние.
Фиксация оси изменениям не подвергается. В связи с этим распределение солнечной радиации осуществляется по-разному. То есть в случае отхождения северного полушария от Солнца она уходит зимой, а южного – летом. Через полгода в этой системе происходят изменения. День зимнего и летнего солнцестояния приходится соответственно на 21 декабря и июня. День весеннего и осеннего равноденствия – 20 марта и 23 сентября.
Фактор, отвечающий за смену времен года
За сезонность на планетах Солнечной системы отвечает угол наклона оси вращения к орбите. Чем меньше угол, тем стабильнее погода на небесном теле и нет смены пор года. Также сезонности не бывает на небесных телах с углом наклона более 90°.
Смена сезонов характерна для объектов с углом наклона оси в пределах 20-30 градусов:
- Земля (23,3°);
- Марс (25,2°);
- Сатурн (29°);
- Нептун (30°).
«Лето» и «зима» также
есть на Меркурии, несмотря на практически отсутствующий наклон оси. Это связано
с высоким эксцентриситетом его орбиты. Разница между температурами в точках
перигелия и афелия на Меркурии составляет 620 градусов Цельсия.
Таким образом, величина и форма пути, который описывает объект вокруг Солнца, очень влияют на формирование температурных условий на нём. Именно невысокий эксцентриситет и небольшая удаленность движения Земли, а также оптимальный угол наклона оси сделали её температуру наиболее комфортной для существования живых организмов.
Изучение Солнечной системы
Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет.
В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями.
Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик.
Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.
В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения.
В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун.
В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы.
В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну.
В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году.
В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.
Галактические орбиты звезд
Звездный узор кажется фиксированным на небе, насколько это касается человеческого зрения; это потому, что их огромные расстояния относительно Земли приводят к движению, невидимому невооруженным глазом. На самом деле звезды вращаются вокруг центра своей галактики.
Звезды с ретроградной орбитой относительно общего вращения дисковой галактики с большей вероятностью будут обнаружены в галактическом гало, чем в галактическом диске . Млечный путь внешнего гало «ы имеет множество шаровых скоплений с ретроградной орбитой и с ретроградным или нулевым вращением. Структура ореола — предмет непрекращающихся дискуссий. Несколько исследований заявили, что нашли ореол, состоящий из двух отдельных компонентов. Эти исследования обнаружили «двойное» гало с внутренним, более богатым металлами, прямым компонентом (т.е. звезды вращаются вокруг галактики в среднем с вращением диска) и бедным металлом, внешним, ретроградным (вращающимся относительно диска) компонентом. . Однако эти результаты были оспорены другими исследованиями, опровергающими такую двойственность. Эти исследования демонстрируют, что данные наблюдений можно объяснить без двойственности при использовании улучшенного статистического анализа и учета неопределенностей измерений.
Считается, что близлежащая звезда Каптейна обрела свою высокоскоростную ретроградную орбиту вокруг галактики в результате того, что она была оторвана от карликовой галактики, которая слилась с Млечным путем.
Движение тел в космосе
Зная, что это – орбита, а также какой она может быть, ученые смогли описать траектории движения самых разных небесных тел. Кометы, спутники, планеты, звезды – большая часть их имеет вытянутую траекторию движения. К примеру, есть кометы, траектория движения у которых сильно вытянута, но может пересекать орбиту планеты. Если в определенный момент планета и комета будут на одной линии движения, то произойдет столкновение, или же гравитационная сила изменит орбиту кометы, сделав ее «пленницей» своей. По мнению ученых, так появились кольца из комет вокруг некоторых планет, а также спутники.
Законы движения планет
«Класс!ная физика» – на Youtube
В конце XVI в. датский астроном И. Кеплер, изучая движение планет, открыл три закона их движения. На основании этих законов И.
Ньютон вывел формулу для закона всемирного тяготения. В дальнейшем, используя законы механики, И. Ньютон решил задачу двух тел — вывел законы, по которым одно тело движется в поле тяготения другого тела.
Он получил три обобщенных закона Кеплера.
Первый закон Кеплера
Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений — кругу, эллипсу, параболе или гиперболе
Планеты движутся вокруг Солнца по эллиптической орбите (рис. 15.6). Ближайшая к Солнцу точка орбиты называется перигелием, самая далекая — афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором.
По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 1.
Движение естественных и искусственных спутников вокруг планет, движение одной звезды вокруг другой в двойной системе также подчиняются этому первому обобщенному закону Кеплера.
Второй закон Кеплера
Каждая планета движется так, что радиус-вектор планеты за равные промежутки времени описывает равные площади.
Планета проходит путь от точки А до А’ и от В до В’ за одно и то же время.
Третий закон Кеплера
Куб большой полуоси орбиты тела, деленный на квадрат периода его обращения и на сумму масс тел, есть величина постоянная.
Если Т — период обращения одного тела вокруг другого тела на среднем расстоянии а, то третий обобщенный закон Кеплера записывается как
а3/ = G/4π2
где М1 и М2 — массы притягивающихся двух тел, a G — гравитационная постоянная. Для Солнечной системы масса Солнца массы любой планеты, и тогда
Правая часть уравнения — постоянная для всех тел Солнечной системы, что и утверждает третий закон Кеплера, полученный ученым из наблюдений.
Движение планет и других небесных тел вокруг Солнца под действием силы тяготения происходит по трем законам Кеплера. Эти законы позволяют рассчитывать положения планет и определять их массы по движению спутников вокруг них.
Следующая страница «Система Земля-Луна»Назад в раздел «Астроноия -конспекты»
Астрономия. 11 класс – Конспекты по учебнику «Физика-11» (Мякишев, Буховцев, Чаругин) – Класс!ная физика
Видимые движения небесных тел — Законы движения планет — Система Земля—Луна — Физическая природа планет и малых тел солнечной системы — Солнце — Основные характеристики звезд — Внутреннее строение Солнца и звезд главной последовательности. Эволюция звезд — Млечный Путь — наша Галактика — Галактики — Строение и эволюция Вселенной — Кратко о солнечной системе и строении Вселенной
Астрофизические параметры Млечного Пути
Для того чтобы представить, как выглядит Млечный Путь в масштабах космоса, достаточно взглянуть на саму Вселенную и сравнить отдельные ее части. Наша галактика входит в подгруппу, которая в свою очередь является частью Местной группы, более крупного образования. Здесь наш космический мегаполис соседствует с галактиками Андромеда и Треугольника. Окружение троице составляют более 40 мелких галактик. Местная группа уже входит в состав еще более крупного образования и является частью сверхскопления Девы. Некоторые утверждают, что это только приблизительные предположения о том, где находится наша галактика. Масштабы образований настолько огромны, что все это представить практически невозможно. Сегодня мы знаем расстояние до ближайших соседствующих галактик. Другие объекты глубокого космоса находятся за пределами видимости. Только теоретически и математически допускается их существование.
Что касается обозримого мира, то сегодня имеется достаточно информации о том, как выглядит наша галактика. Существующая модель, а вместе с ней и карта Млечного Пути, составлена на основании математических расчетов, данных полученных в результате астрофизических наблюдений. Каждое космическое тело или фрагмент галактики занимает свое место. Это, как и во Вселенной, только в меньшем масштабе. Интересны астрофизические параметры нашего космического мегаполиса, а они впечатляют.
https://youtube.com/watch?v=QUmLohLA0uM
Наша галактика спирального типа с перемычкой, которую на звездных картах обозначают индексом SBbc. Диаметр галактического диска Млечного Пути составляет порядка 50-90 тысяч световых лет или 30 тысяч парсек. Для сравнения радиус галактики Андромеды равен 110 тыс. световых лет в масштабах Вселенной. Можно только представить насколько больше Млечного Пути наша соседка. Размеры же ближайших к Млечному Пути карликовых галактик в десятки раз меньше параметров нашей галактики. Магеллановы облака имеют диаметр всего 7-10 тыс. световых лет. В этом огромном звездном круговороте насчитывается порядка 200-400 миллиардов звезд. Эти звезды собраны в скопления и туманности. Значительная ее часть – это рукава Млечного Пути, в одном из которых находится наша солнечная система.
Все остальное — это темная материя, облака космического газа и пузыри, которые заполняют межзвездное пространство. Чем ближе к центру галактики, тем больше звезд, тем теснее становится космическое пространство. Наше Солнце располагается в области космоса, состоящем из более мелких космических объектов, находящихся на значительном расстоянии друг от друга.
Масса Млечного Пути составляет 6х1042 кг, что в триллионы раз больше массы нашего Солнца. Практически все звезды, населяющие нашу звездную страну, расположены в плоскости одного диска, толщина которого составляет по разным оценкам 1000 световых лет. Узнать точную массу нашей галактики не представляется возможным, так как большая часть видимого спектра звезд, скрыта от нас рукавами Млечного Пути. К тому же неизвестна масса темной материи, которая занимает огромные межзвездные пространства.
Центр галактики имеет диаметр 1000 парсек и состоит из ядра с интересной последовательностью. Центр ядра имеет форму выпуклости, в которой сосредоточены крупнейшие звезды и скопление раскаленных газов. Именно эта область выделяет огромное количество энергии, которая по совокупности больше, чем излучают миллиарды звезд, входящие в состав галактики. Эта часть ядра самая активная и самая яркая часть галактики. По краям ядра имеется перемычка, которая является началом рукавов нашей галактики. Такой мостик возникает в результате колоссальной силы гравитации, вызванной стремительной скоростью вращения самой галактики.
Рассматривая центральную часть галактики, парадоксальным выглядит следующий факт. Ученые долгое время не могли понять, что находится в центре Млечного Пути. Оказывается, в самом центре звездной страны под названием Млечный Путь устроилась сверхмассивная черная дыра, диаметр которой составляет порядка 140 км. Именно туда и уходит большая часть энергии, выделяемой ядром галактики, именно в этой бездонной бездне растворяются и умирают звезды. Присутствие черной дыры в центре Млечного Пути свидетельствует о том, что все процессы образования во Вселенной, должны когда-то закончиться. Материя превратится в антиматерию и все повторится снова. Как будет себя вести это чудовище через миллионы и миллиарды лет, черная бездна молчит, что указывает на то, что процессы поглощения материи только набирают силу.
Эллиптическая орбита Земли
Нет, маршрут планеты не выступает идеальным кругом. Мы вращаемся по вытянутому эллипсу. Впервые это описал Иоганн Кеплер. Можете изучить движение Земли по орбите на схеме.
Строение орбиты Земли
Ученый измерил орбиты Земли и Марса и понял, что периодически они ускорялись и тормозили. Это совпадало с показателями афелия и перигелия, а значит дистанция от звезды основывается на орбитальной скорости (никакой круговой орбиты).
Для характеристики природы эллиптических орбит исследователи используют понятие эксцентриситета – от 0 к 1. Если он приближен к 0, то имеем практически круг. У Земли – 0.02, то есть близка к круговой.
Претенденты на звание карликовых планет
Претендентами на статус карликовой планеты считают те объекты, которые приближаются к ним по своим характеристикам. Одним из них является Седна. Некоторые астрономы уже перевели её в звание «карлика». Они считают, что у этого тела достаточно массы и яркости для приобретения сферической формы. Однако ЦМП до конца не принял данное решение. Главный контраргумент заключается в том, что она не «очистила» собственную траекторию движения от других тел.
Орбита Седны
В число претендентов входит Орк (90482) – крупное космическое тело из пояса Койпера. Его орбита схожа с орбитой Плутона. Орк располагается всегда с противоположной стороны от него. У него яркая поверхность, покрытая кристаллами льда, в котором присутствуют соединения метана и аммиака.
Орбита Орка 90482 относительно орбит планет Солнечной системы
На данный момент существует более 250 объектов, которые могут стать самостоятельными. Большинство из них имеет номерной знак без названия. Чтобы получить статус, они должны иметь все характеристики карликовых планет.
Естествознание
§ 54. Видимое движение планет
Все, что выходит за рамки геометрии,
выходит за рамки нашего понимания.
Б. Паскаль
Как построить траектории движения планет Солнечной системы в геоцентрической и гелиоцентрической системах отсчета? Почему планеты на небесной сфере описывают петлю? От чего зависит угловой размер петли планеты? Как Коперник оценил относительные расстояния от Солнца до планет?
Урок-практикум
Наблюдения за небом. Гравюра из
трактата Гевелия «Селенография, или Описание Луны»
Петлеобразная траектория Марса
ЦЕЛЬ РАБОТЫ. Научиться строить траектории тел в разных системах отсчета.
ПЛАН РАБОТЫ. Определите по результатам наблюдений, как зависит скорость обращения планет вокруг Солнца от расстояния планеты до Солнца. Постройте кривую видимого движения планеты Марс на небесной сфере.
- Какова зависимость линейной скорости обращения планеты от расстояния до Солнца?
- Оцените примерную линейную скорость движения планет вокруг Солнца. Сделайте вывод о зависимости скорости движения планеты вокруг Солнца от расстояния планеты до него. Заполните таблицу.
ПОДСКАЗКА. Скорость связана с радиусом окружности и периодом формулой V = 2пr/Т. Для расчета переведите расстояния в километры, периоды в секунды.
2. Постройте петлю попятного движения планеты Марс по небесной сфере геометрическим способом, но с точки зрения земного наблюдателя, имея в виду, что планеты движутся вокруг Солнца (по Копернику).
Ответьте на вопросы:
- Почему земному наблюдателю кажется, что планета на небесной сфере описывает развернутую петлю, а не просто идет вперед-назад, как получилось на нашем рисунке в задании 2?
- От чего зависит угловой размер петли видимого движения планеты? Для ответа на этот вопрос постройте петлю видимого с Земли движения планеты Сатурн и сравните с угловым размером петли попятного движения Марса.
ПОДСКАЗКА. Для этого заготовьте схему, на которой покажите положение Солнца, орбиту Земли (в приближении окружности), орбиту Марса, который расположен, как видно из таблицы, на расстоянии в 1,5 раза большем, чем Земля, от Солнца. Наблюдателю с Земли кажется, что планета описывает петлю, когда Земля обгоняет в своем движении внешнюю планету, например Марс, или внутренняя планета, например Венера, обгоняет в своем орбитальном движении Землю. Расположите на орбитах Землю и Марс вблизи этого положения. Отметьте несколько точек траектории этих планет — 1, 2, …, 8, соответствующих восьми положениям планет. Учтите, что Марс движется медленнее Земли примерно в 1,2 раза. Обозначьте сферу неподвижных звезд. На ней постройте серию видимых положений планет с точки зрения земного наблюдателя (1, 2…..8). Для этого используйте прямую линию (луч зрения), соединяющую соответствующие положения Земли и Марса в определенные моменты времени (1,2,…, 8).
На рисунке 63 показано лишь видимое положение планеты в момент времени 1. Достройте положения 2, 3…..8 и убедитесь в том, что земному наблюдателю кажется в период, когда Земля обгоняет Марс в своем орбитальном движении, что на небесной сфере Марс сначала идет в прямом движении на фоне звезд (с запада на восток), потом останавливается, поворачивает обратно (попятное движение) и после этого снова движется вперед. Нам кажется, что планеты описывают петлю, потому что в это время в своем движении по орбите Земля обгоняет внешнюю планету или внутренняя планета обгоняет Землю. Это объясняется относительностью движения. Чем дальше планета от Земли, тем меньшие угловые размеры имеет петля. Из-за некоторого угла наклона орбит планет петля кажется развернутой.
Рис. 63. Объяснение петлеобразного движения планет
В разных системах отсчета с точки зрения кинематики траектория движения выглядит по-разному. Видимое движение планет на небесной сфере — это отражение движения с точки зрения земного наблюдателя. Геометрические построения и использование данных наблюдений позволяют оценить относительные расстояния до планет. Впервые такую оценку сделал Коперник, описывая свою гелиоцентрическую систему мира.